1,520 Alzheimers Headlines
Patricio Reyes M.D., F.A.N.N.
Director, Traumatic Brain Injury, Alzheimer's Disease & Cognitive Disorders Clinics; Phoenix, AZ; Chief Medical Officer, Retired NFL Players Association

Barrow Neurological Institute
St. Joseph's Hospital and Medical Center
"2 NEW THERAPIES FOR ALZHEIMER'S"
Produced by MD Health Channel
Executive Editor.....Anne-Merete Robbs
CEO..............Stan Swartz

Dr. Reyes and his team are constantly working on new medicines and new solutions...You will receive news alerts...information on new trials as Dr Reyes announces them!
"2 NEW THERAPIES FOR ALZHEIMER'S"
Patricio Reyes M.D., F.A.N.N.
Director, Traumatic Brain Injury, Alzheimer's Disease & Cognitive Disorders Clinics; Phoenix, AZ; Chief Medical Officer, Retired NFL Players Association

St. Joseph's Hospital and Medical Center



DO YOU HAVE ALZHEIMERS?
 
"HELP DR. REYES... IN HIS BATTLE TO FIND A CURE...
.HE NEEDS YOUR HELP:
YOU CAN HELP WIN THE BATTLE FOR A CURE BY JOINING A TRIAL!!"....

Stan Swartz, CEO,
The MD Health Channel



"You'll receive all medication and study based procedures at
no charge

if you qualify for one of the many trials being conducted at Barrow Neurological Institute."
 

"Dr. Reyes Changed My Life"

- John Swartz
92 Years Old
Attorney at Law
"Dr.Reyes Changed My Life "
1:18
"At 92...I had lost my will to live"
5:48
Tips on Aging
2:29
"Dr. Reyes gave me customized health care"
2:09

Patricio Reyes M.D.
Director, Traumatic Brain Injury, Alzheimer's Disease & Cognitive Disorders Clinics; Phoenix, AZ; Chief Medical Officer, Retired NFL Players Association

Barrow Neurological Institute

St. Joseph's Hospital and Medical Center
"PRESERVING BRAIN FUNCTIONS "
Runtime: 50:22
Runtime: 50:22
"2 NEW THERAPIES FOR ALZHEIMER'S"
Runtime: 10:27
Runtime: 10:27
ALZHEIMER'S AWARENESS PROGRAMS
Runtime: 5:00
Runtime: 5:00
BIOMEDICAL RESEARCH IN ALZHEIMER'S DISEASE
PDF Document 850 kb

Download Free

4 TALES OF NEUROSURGERY &
A PIANO CONCERT BY DR. SPETZLER...
Plus 2 books written by Survivors for Survivors!
Robert F. Spetzler M.D.
Director, Barrow Neurological Institute

J.N. Harber Chairman of Neurological Surgery

Professor Section of Neurosurgery
University of Arizona
TALES OF NEUROSURGERY:
A pregnant mother..a baby..faith of a husband.. .plus... Cardiac Standstill: cooling the patient to 15 degrees Centigrade!
Lou Grubb Anurism
The young Heros - kids who are confronted with significant medical problems!
2 Patients...confronted with enormous decisions before their surgery...wrote these books to help others!
A 1 MINUTE PIANO CONCERT BY DR. SPETZLER

Michele M. Grigaitis MS, NP
Alzheimer's Disease and Cognitive Disorders Clinic

Barrow Neurological Clinics
COPING WITH DEMENTIA
 
Free Windows Media Player Click

Links
Barrow Neurological Institute

Archives
October 2006  
November 2006  
December 2006  
January 2007  
February 2007  
March 2007  
May 2007  
June 2007  
November 2007  
December 2007  
April 2008  
July 2008  
August 2008  
September 2008  
October 2008  
November 2008  
December 2008  
January 2009  
February 2009  
March 2009  
April 2009  
May 2009  
February 2010  
March 2013  
May 2013  
November 2013  
January 2014  
February 2014  
March 2014  
April 2014  
May 2014  
June 2014  
July 2014  
June 2016  
July 2016  
August 2016  
September 2016  
October 2016  
November 2016  
December 2016  
January 2017  
February 2017  
March 2017  
April 2017  
May 2017  
June 2017  
July 2017  
August 2017  
September 2017  
October 2017  
November 2017  
December 2017  
January 2018  
February 2018  
March 2018  
April 2018  
May 2018  
June 2018  
July 2018  
August 2018  
September 2018  
October 2018  

This page is powered by Blogger. Isn't yours?

Sunday, March 26, 2017

 

The brain up close: Radical microscope reveals nerve synapses firing in breakthrough that could shed light on Alzheimer's and depression






























The closest view yet of multiple working synapses. Using a custom-built microscope, the scientists achieved the closest view yet of working nerve synapses - the junctions between neurons that dictate how they communicate. The image is color coded, where brighter yellow spots represent multiple vesicle releases at different synapses. This image was obtained following extensive simulation of vesicle release while using a fluorescent marker 

The closest image yet of working nerve synapses has been captured by researchers.
Until now, close-up views of neuron synapses have been provided by electron microscopes, which require the cells to be dead. 

But the researchers built a custom-built microscope with a sensitive camera to analyze living, working neurons up close. 

The brain hosts a complex network of interconnected nerve cells that are constantly changing electrical and chemical signals at high speeds.
Researchers at the Washington University School of Medicine in St Louis studied synapses - the junction between neurons that allow them to communication with each other. 
Studying synapses is important for understanding brain networks and how diseases such as depression and Alzheimer's affects the brain, the researchers said. 

'Synapses are little nanoscale machines that transmit information,' said senior author Dr Vitaly Klyachko, an associate professor of cell biology and physiology at the School of Medicine. 

'They’re very difficult to study because their scale is below what conventional light microscopes can resolve. 

'So what is happening in the active zone of a synapse looks like a blur.

'To remedy this, our custom-built microscope has a very sensitive camera and is extremely stable at body temperatures, but most of the novelty comes from the analysis of the images.

'Our approach gives us the ability to resolve events in the synapse with high precision,' he said. 

A synapse consists of a tiny gap between two nerves, with one nerve serving as the transmitter and the other as the receiver. 

When sending signals, the transmitting side of the synapse releases little packages of neurotransmitters, which traverse the gap and bind to receptors on the receiving side, completing the information relay. 

On the transmitting side of the synapse the neurotransmitters at the active zone are packaged into synaptic vesicles.

The active zone is the area where the neurotransmitter is released from.  
Until now, close up views of the active zone have been provided by electron microscopes. 

They work by bombarding objects with electron beams instead of light. 

While they offer resolutions of tens of thousand of nanometers - around 1,000 times thinner than a human hair and smaller - they can't view living cells. 

To withstand being bombarded by electrons, the samples must be fixed in an epoxy resin or flash frozen, cut into thin slices and coated in a layer of metal atoms.

'Most of what we know about the active zone is from indirect studies, including beautiful electron microscopy images,' said Dr Klyachko.

'But these are static pictures.

'We wanted to develop a way to see the synapse function.'

The researchers wanted to find out if there are many places on the neuron's active zone where vesicles can release its neurotransmitter into the gap to send a message to another neuron. 

The researchers said indirect measurements suggest there might be only one, or maybe two or three of these sites, at most. 

This idea can be compared to a shower head: Does the neuron function as a single jet or as a rain shower? 

Dr Klyachko and first author Dr Dario Maschi, a postdoctoral researcher in Dr Klyachko's lab, found that the active zone is actually more like a rain shower. 

But it isn't random - there are about 10 places across the active zone that are reused often for releasing neurotransmitter. 

But there's a limit to how quickly the sites can be reused -  about 100 milliseconds must pass before an individual site can be used again. 

When the neurons are sending messages at a rapid rate and many vesicles are released, site usage tends to move from the center to the edges of the active zone. 

'Neurons often fire at 50 to 100 times per second, so it makes sense to have multiple sites,' Dr Klyachko said.

'If one site has just been used, the active zone can still be transmitting signals through its other sites.

Story Source: The above story is based on materials provided by DAILYMAIL
Note: Materials may be edited for content and length
Click here to read more