1,520 Alzheimers Headlines
Patricio Reyes M.D., F.A.N.N.
Director, Traumatic Brain Injury, Alzheimer's Disease & Cognitive Disorders Clinics; Phoenix, AZ; Chief Medical Officer, Retired NFL Players Association

Barrow Neurological Institute
St. Joseph's Hospital and Medical Center
"2 NEW THERAPIES FOR ALZHEIMER'S"
Produced by MD Health Channel
Executive Editor.....Anne-Merete Robbs
CEO..............Stan Swartz

Dr. Reyes and his team are constantly working on new medicines and new solutions...You will receive news alerts...information on new trials as Dr Reyes announces them!
"2 NEW THERAPIES FOR ALZHEIMER'S"
Patricio Reyes M.D., F.A.N.N.
Director, Traumatic Brain Injury, Alzheimer's Disease & Cognitive Disorders Clinics; Phoenix, AZ; Chief Medical Officer, Retired NFL Players Association

St. Joseph's Hospital and Medical Center



DO YOU HAVE ALZHEIMERS?
 
"HELP DR. REYES... IN HIS BATTLE TO FIND A CURE...
.HE NEEDS YOUR HELP:
YOU CAN HELP WIN THE BATTLE FOR A CURE BY JOINING A TRIAL!!"....

Stan Swartz, CEO,
The MD Health Channel



"You'll receive all medication and study based procedures at
no charge

if you qualify for one of the many trials being conducted at Barrow Neurological Institute."
 

"Dr. Reyes Changed My Life"

- John Swartz
92 Years Old
Attorney at Law
"Dr.Reyes Changed My Life "
1:18
"At 92...I had lost my will to live"
5:48
Tips on Aging
2:29
"Dr. Reyes gave me customized health care"
2:09

Patricio Reyes M.D.
Director, Traumatic Brain Injury, Alzheimer's Disease & Cognitive Disorders Clinics; Phoenix, AZ; Chief Medical Officer, Retired NFL Players Association

Barrow Neurological Institute

St. Joseph's Hospital and Medical Center
"PRESERVING BRAIN FUNCTIONS "
Runtime: 50:22
Runtime: 50:22
"2 NEW THERAPIES FOR ALZHEIMER'S"
Runtime: 10:27
Runtime: 10:27
ALZHEIMER'S AWARENESS PROGRAMS
Runtime: 5:00
Runtime: 5:00
BIOMEDICAL RESEARCH IN ALZHEIMER'S DISEASE
PDF Document 850 kb

Download Free

4 TALES OF NEUROSURGERY &
A PIANO CONCERT BY DR. SPETZLER...
Plus 2 books written by Survivors for Survivors!
Robert F. Spetzler M.D.
Director, Barrow Neurological Institute

J.N. Harber Chairman of Neurological Surgery

Professor Section of Neurosurgery
University of Arizona
TALES OF NEUROSURGERY:
A pregnant mother..a baby..faith of a husband.. .plus... Cardiac Standstill: cooling the patient to 15 degrees Centigrade!
Lou Grubb Anurism
The young Heros - kids who are confronted with significant medical problems!
2 Patients...confronted with enormous decisions before their surgery...wrote these books to help others!
A 1 MINUTE PIANO CONCERT BY DR. SPETZLER

Michele M. Grigaitis MS, NP
Alzheimer's Disease and Cognitive Disorders Clinic

Barrow Neurological Clinics
COPING WITH DEMENTIA
 
Free Windows Media Player Click

Links
Barrow Neurological Institute

Archives
October 2006  
November 2006  
December 2006  
January 2007  
February 2007  
March 2007  
May 2007  
June 2007  
November 2007  
December 2007  
April 2008  
July 2008  
August 2008  
September 2008  
October 2008  
November 2008  
December 2008  
January 2009  
February 2009  
March 2009  
April 2009  
May 2009  
February 2010  
March 2013  
May 2013  
November 2013  
January 2014  
February 2014  
March 2014  
April 2014  
May 2014  
June 2014  
July 2014  
June 2016  
July 2016  
August 2016  
September 2016  
October 2016  
November 2016  
December 2016  
January 2017  
February 2017  
March 2017  
April 2017  
May 2017  
June 2017  
July 2017  
August 2017  
September 2017  
October 2017  
November 2017  
December 2017  
January 2018  
February 2018  
March 2018  
April 2018  
May 2018  
June 2018  
July 2018  
August 2018  
September 2018  
October 2018  
November 2018  

This page is powered by Blogger. Isn't yours?

Wednesday, November 9, 2016

 

Structure of toxic tau aggregates determines type of dementia, rate of progression












A new study demonstrates that toxic tau aggregates can be used to determine which type of dementia will occur, which regions of  will be affected, and how quickly the disease will spread. Top: Dr. Marc Diamond's lab replicated distinctly patterned tau strains, shown in green, in cultured cells. Bottom: These tau strains were inoculated into the brains of mice and formed unique patterns of pathology that can be linked to specific dementias.
Credit: Image courtesy of UT Southwestern Medical Center

The distinct structures of toxic protein aggregates that form in degenerating brains determine which type of dementia will occur, which regions of  will be affected, and how quickly the disease will spread, according to a study from the Peter O'Donnell Jr. Brain Institute.

The research helps explain the diversity of dementias linked to tau protein aggregation, which destroys brain cells of patients with Alzheimer's and other neurodegenerative syndromes. The study also has implications for earlier and more accurate diagnoses of various dementias through  of the unique forms of tau associated with each.

"In addition to providing a framework to understand why patients develop different types of neurodegeneration, this work has promise for the development of drugs to treat specific neurodegenerative diseases, and for how to accurately diagnose them. The findings indicate that a one-size-fits-all strategy for therapy may not  and that we have to approach clinical trials and drug development with an awareness of which forms of tau we are targeting," said study author Dr. Marc Diamond, founding Director of the Center for Alzheimer's and Neurodegenerative Diseases, and Professor of Neurology and Neurotherapeutics with the O'Donnell Brain Institute at UT Southwestern Medical Center.

Researchers used special cell systems to replicate distinct tau aggregate conformations. These different forms of pathological tau were then inoculated into the brains of mice. Each form created different pathological patterns, recapitulating the variation that occurs in diseases such as Alzheimer's, frontotemporal dementias, and traumatic encephalopathy.

The different forms of tau caused pathology that spread at different rates through the  and affected specific brain regions. This experiment demonstrated that the structure of pathological tau aggregates alone is sufficient to account for most if not all the variation  in human neurodegenerative diseases that are linked to this protein.

The finding, published in Neuron, could have a notable impact on widespread efforts at the O'Donnell Brain Institute and elsewhere to develop treatments that eliminate tau and other toxic proteins from the brains of dementia patients.

"The challenge for us now is to figure out how to rapidly and efficiently determine the forms of tau that are present in individual patients, and simultaneously, to develop specific therapies. This work says that it should be possible to predict patterns of disease in patients and responses to therapy based on knowledge of tau aggregate structure," said Dr. Diamond, who holds the Distinguished Chair in Basic Brain Injury and Repair.

Dr. Diamond's lab, at the forefront of many notable findings relating to tau, had previously determined that tau acts like a prion -- an infectious protein that can self-replicate and spread like a virus through the brain. The lab has determined that tau protein in  brain can form many distinct strains, or self-replicating structures, and developed methods to reproduce them in the laboratory. This research led Dr. Diamond's team to the latest study to test whether these strains might account for different forms of dementia.

To make this link, 18 distinct tau aggregate strains were replicated in the lab from human neurodegenerative disease brain  or were created from mouse models or other artificial sources. Researchers inoculated the strains into different brain regions of mice and found striking differences among them.

While some strains had  and rapid effects, others replicated only in limited parts of the brain, or caused widespread disease but did so very slowly. This surprising result answered a fundamental question that has dogged the field of neurodegenerative disease: Why are brain regions vulnerable in certain cases but not others, and why do some diseases progress more rapidly than others?

For instance, in Alzheimer's disease, problems begin in brain memory centers before spreading to other areas that control functions such as language. Conversely, due to initial degeneration of frontal and temporal brain regions in frontotemporal dementia, the memory centers are relatively spared, and patients often first show changes in personality and behavior.

Story Source: The above story is based on materials provided by SCIENCEDAILY
Note: Materials may be edited for content and length