1,520 Alzheimers Headlines
Patricio Reyes M.D., F.A.N.N.
Director, Traumatic Brain Injury, Alzheimer's Disease & Cognitive Disorders Clinics; Phoenix, AZ; Chief Medical Officer, Retired NFL Players Association

Barrow Neurological Institute
St. Joseph's Hospital and Medical Center
"2 NEW THERAPIES FOR ALZHEIMER'S"
Produced by MD Health Channel
Executive Editor.....Anne-Merete Robbs
CEO..............Stan Swartz

Dr. Reyes and his team are constantly working on new medicines and new solutions...You will receive news alerts...information on new trials as Dr Reyes announces them!
"2 NEW THERAPIES FOR ALZHEIMER'S"
Patricio Reyes M.D., F.A.N.N.
Director, Traumatic Brain Injury, Alzheimer's Disease & Cognitive Disorders Clinics; Phoenix, AZ; Chief Medical Officer, Retired NFL Players Association

St. Joseph's Hospital and Medical Center



DO YOU HAVE ALZHEIMERS?
 
"HELP DR. REYES... IN HIS BATTLE TO FIND A CURE...
.HE NEEDS YOUR HELP:
YOU CAN HELP WIN THE BATTLE FOR A CURE BY JOINING A TRIAL!!"....

Stan Swartz, CEO,
The MD Health Channel



"You'll receive all medication and study based procedures at
no charge

if you qualify for one of the many trials being conducted at Barrow Neurological Institute."
 

"Dr. Reyes Changed My Life"

- John Swartz
92 Years Old
Attorney at Law
"Dr.Reyes Changed My Life "
1:18
"At 92...I had lost my will to live"
5:48
Tips on Aging
2:29
"Dr. Reyes gave me customized health care"
2:09

Patricio Reyes M.D.
Director, Traumatic Brain Injury, Alzheimer's Disease & Cognitive Disorders Clinics; Phoenix, AZ; Chief Medical Officer, Retired NFL Players Association

Barrow Neurological Institute

St. Joseph's Hospital and Medical Center
"PRESERVING BRAIN FUNCTIONS "
Runtime: 50:22
Runtime: 50:22
"2 NEW THERAPIES FOR ALZHEIMER'S"
Runtime: 10:27
Runtime: 10:27
ALZHEIMER'S AWARENESS PROGRAMS
Runtime: 5:00
Runtime: 5:00
BIOMEDICAL RESEARCH IN ALZHEIMER'S DISEASE
PDF Document 850 kb

Download Free

4 TALES OF NEUROSURGERY &
A PIANO CONCERT BY DR. SPETZLER...
Plus 2 books written by Survivors for Survivors!
Robert F. Spetzler M.D.
Director, Barrow Neurological Institute

J.N. Harber Chairman of Neurological Surgery

Professor Section of Neurosurgery
University of Arizona
TALES OF NEUROSURGERY:
A pregnant mother..a baby..faith of a husband.. .plus... Cardiac Standstill: cooling the patient to 15 degrees Centigrade!
Lou Grubb Anurism
The young Heros - kids who are confronted with significant medical problems!
2 Patients...confronted with enormous decisions before their surgery...wrote these books to help others!
A 1 MINUTE PIANO CONCERT BY DR. SPETZLER

Michele M. Grigaitis MS, NP
Alzheimer's Disease and Cognitive Disorders Clinic

Barrow Neurological Clinics
COPING WITH DEMENTIA
 
Free Windows Media Player Click

Links
Barrow Neurological Institute

Archives
October 2006  
November 2006  
December 2006  
January 2007  
February 2007  
March 2007  
May 2007  
June 2007  
November 2007  
December 2007  
April 2008  
July 2008  
August 2008  
September 2008  
October 2008  
November 2008  
December 2008  
January 2009  
February 2009  
March 2009  
April 2009  
May 2009  
February 2010  
March 2013  
May 2013  
November 2013  
January 2014  
February 2014  
March 2014  
April 2014  
May 2014  
June 2014  
July 2014  
June 2016  
July 2016  
August 2016  
September 2016  
October 2016  
November 2016  
December 2016  
January 2017  
February 2017  
March 2017  
April 2017  
May 2017  
June 2017  
July 2017  
August 2017  
September 2017  
October 2017  
November 2017  
December 2017  
January 2018  
February 2018  

This page is powered by Blogger. Isn't yours?

Sunday, September 11, 2016

 

New Alzheimer’s Treatment Could Reverse Synapse Degeneration and Stop Memory Loss























MEMORY LOSS

Memory loss is the most dreaded effect of Alzheimer’s. This is what researchers at the University College London focused on in a report published at the journal Current Biology. They turned their attention to the hippocampus, which is the part of the brain involved in long-term memory. They wanted to observe the interplay between two proteins: Wnt and Dickkopf-1 (Dkk1).

Wnt plays a crucial role in the formation and development of synapses — a process called canonical Wnt signaling, modulating communications between one neuron and another. On the other hand, Dkk1 is capable of binding itself to Wnt neuron receptors, blocking Wnt signaling.

The research indicates that changes involving synapses at a molecular level may be affecting memory loss, similar to symptoms associated with Alzheimer’s — where Wnt signaling is reduced and an increase in Dkk1 levels is observed.

IN BRIEF

Alzheimer's Disease is one of the most feared ailments in the US and probably in many parts of the world. The debilitating effects of Alzheimer's is too much to bear for the afflicted and for those around them. So, whenever new research provides insight to fighting this disease, it is always worth paying attention to.

MEMORY LOSS

Memory loss is the most dreaded effect of Alzheimer’s. This is what researchers at the University College London focused on in a report published at the journal Current Biology. They turned their attention to the hippocampus, which is the part of the brain involved in long-term memory. They wanted to observe the interplay between two proteins: Wnt and Dickkopf-1 (Dkk1).

Wnt plays a crucial role in the formation and development of synapses — a process called canonical Wnt signaling, modulating communications between one neuron and another. On the other hand, Dkk1 is capable of binding itself to Wnt neuron receptors, blocking Wnt signaling.

The research indicates that changes involving synapses at a molecular level may be affecting memory loss, similar to symptoms associated with Alzheimer’s — where Wnt signaling is reduced and an increase in Dkk1 levels is observed.

CAN IT BE REVERSED?

Using mice in controlled experiments, the researchers were able to confirm connections between elevated Dkk1 levels in the hippocampus and degradation of memory functions. The experiments involved putting the mice in situations that test spatial memory (for memories involving locations and painful experiences).

They confirmed that Wnt signaling is, indeed, crucial in the formation of memories. They saw that increased Dkk1 presence reduced the ability of a sending neuron to excite a receiving neuron, and also affected neural plasticity (the ability to establish stronger neural connections of recent co-activation). In short, the mice showed observable signs of memory loss.

Could these effects be reversed? Using the same controlled experiments, this time gradually removing Dkk1 from the mice, the researchers saw that the effects mentioned above disappeared, and memory functions and neural plasticity were completely restored.

Story Source: The above story is based on materials provided by FUTURISM
Note: Materials may be edited for content and length